5 самых горячих мест во Вселенной

Побить это рекорд вряд ли удастся; в момент рождения наша Вселенная имела температуру около 1032 К, и под словом «момент» мы здесь подразумеваем не секунду, а планковскую единицу времени, равную 5 10-44 секунды. В это буквально неизмеримо короткое время Вселенная была так горяча, что мы понятия не имеем, по каким законам она существовала; на таких энергиях не существуют даже фундаментальные частицы.
2. БАК
Второе место в списке самых горячих мест (или моментов времени, в данном случае разницы нет) после Большого Взрыва занимает наша голубая планета. В 2012 году на Большом Адронном коллайдере физики столкнули разогнанные до 99% скорости света тяжелые ионы и на краткое мгновение получили температуру в 5,5 триллионов Кельвин (5*1012) (или градусов Цельсия — на таких масштабах это одно и то же).
3. Нейтронные звезды
1011 К - такова температура внутри новорожденной нейтронной звезды. Вещество при такой температуре совсем не похоже на привычные нам формы. Недра нейтронных звезд состоят из бурлящего «супа» электронов, нейтронов и других элементов. Всего за несколько минут звезда остывает до 10 9 К, а за первые сто лет существования — еще на порядок.

Температура внутри огненного шара ядерного взрыва составляет около 20 000 К. Это больше, чем температура на поверхности большинства звезд главной последовательности.
5. Самые горячие звезды (кроме нейтронных)
Температура поверхности Солнца — около шести тысяч градусов, но это не предел для звезд; самая горячая из известных на сегодняшний день звезд, WR 102 в созвездии Стрельца, раскалена до 210 000 К — это в десять раз горячее атомного взрыва. Таких горячих звезд сравнительно немного (в Млечном Пути их нашли около сотни, еще столько же в других галактиках), они в 10-15 раз массивнее Солнца и намного ярче него.
Что случится с водой в открытом космосе: испарится или превратится в лед?


Космос — очень, очень холодное место (мы писали о том, где во Вселенной находится самая холодная точка с температурой вещества 0,5 К). На сильном холоде, как подсказывает нам жизненный опыт, вода превращается в лед — кристаллизуется.
Но космос — это еще и самый близкий к идеальному вакуум, до которого можно дотянуться. Одна атмосфера эквивалентна давлению 6 x 1022 атомов водорода на квадратный метр. В лучших вакуумных камерах на Земле ученые создают давление в миллиарды раз меньшее, но в межзвездном пространстве оно опускается в миллионы и миллиарды раз ниже земных технических рекордов.
А при пониженном давлении вода переходит в газообразное состояние — кипит.

Так что же произойдет, если жидкая вода окажется одновременно при очень низком давлении и очень низкой температуре — замерзнет или мгновенно вскипит, превратившись в газ? Ответ — в теплоемкости воды. Космос холоден, но даже в межгалактическом пространстве вода очень неплохо сохраняет то тепло, которое ей когда-то сообщили. Резко охладить ее до температуры, близкой к абсолютному нолю, невозможно — слишком велика разница между комнатной (293 К) и средней по космосу. К тому же в момент, когда вода окажется в безвоздушном холодном мраке, силы поверхностного натяжения сформируют водяные сферы, и площадь охлаждения станет минимальной.

Таким образом процесс охлаждения будет идти невероятно медленно — по крайней мере до тех пор, пока каждая молекула не окажется сама по себе, вдалеке от других уголков H2O.
А что помешает молекулам воды кинуться врассыпную? Ведь давление станет пренебрежимо мало, и переход в газообразное состояние может произойти совершенно мгновенно! Когда же молекулы или группы молекул воды окажутся относительно далеко друг от друга в облаке газа, они мгновенно растеряют кинетическую энергию, и их температура резко упадет. В каком агрегатном состоянии вода окажется тогда? Чтобы ответить, взглянем на фазовую диаграмму воды. Из нее видно, что если температура падает до -50°C, то никакое низкое давление уже неспособно сделать ее жидкой или газообразной.
Итак, последовательность событий такова: попадая в открытый космос, вода сначала мгновенно становится газообразной, а затем замерзает в виде крошечных льдинок, заполняющих межзвездную пустоту.
-
10 физических явлений на кухне: увидеть своими глазами

1. Диффузия
С этим физическим явлением на кухне мы сталкиваемся постоянно. Его название образовано от латинского diffusio — взаимодействие, рассеивание, распространение. Это процесс взаимного проникновения молекул или атомов двух граничащих веществ. Скорость диффузии пропорциональна площади поперечного сечения тела (объему), и разности концентраций, температур смешиваемых веществ. Если есть разница температуры, то она задает направление распространения (градиент) — от горячего к холодному. В итоге происходит самопроизвольное выравнивание концентраций молекул или атомов.
На кухне это физическое явление можно наблюдать при распространении запахов. Благодаря диффузии газов, сидя в другой комнате, можно понять, что готовится. Как известно, природный газ не имеет запаха, и к нему примешивают добавку, чтобы легче было обнаружить утечку бытового газа. Резкий неприятный запах добавляет одорант, например, этилмеркаптан. Если с первого раза конфорка не загорелась, то мы можем чувствовать специфический запах, который с детства мы знаем, как запах бытового газа.
А если бросить в кипяток крупинки чая или заварной пакетик и не размешивать, то можно увидеть, как распространяется чайный настой в объеме чистой воды. Это диффузия жидкостей. Хорошей иллюстрацией физики на кухне - диффузии в твердом теле — может быть засолка помидоров, огурцов, грибов или капусты. Кристаллы соли в воде распадаются на ионы Na и Cl, которые, хаотически двигаясь, проникают между молекулами веществ в составе овощей или грибов.

2. Смена агрегатного состояния
Мало кто из нас замечал, что в оставленном стакане с водой через несколько дней испаряется такая же часть воды при комнатной температуре, как и при кипячении в течение 1−2 минут. А замораживая продукты или воду для кубиков льда в холодильнике, мы не задумываемся, как это происходит. Между тем, эти самые обыденные и частые кухонные явления легко объясняются физикой. Жидкость обладает промежуточным состоянием между твердыми веществами и газами. При температурах, отличных от кипения или замерзания, силы притяжения между молекулами в жидкости не так сильны или слабы, как в твердых веществах и в газах. Поэтому, например, только получая энергию (от солнечных лучей, молекул воздуха комнатной температуры) молекулы жидкости с открытой поверхности постепенно переходят в газовую фазу, создавая над поверхностью жидкости давление пара. Скорость испарения растет при увеличении площади поверхности жидкости, повышении температуры, уменьшении внешнего давления. Если температуру повышать, то давление пара этой жидкости достигает внешнего давления. Температуру, при которой это происходит, называют температурой кипения. Температура кипения снижается при уменьшении внешнего давления. Поэтому в горной местности вода закипает быстрее.
И наоборот, молекулы воды при понижении температуры теряют кинетическую энергию до уровня сил притяжения между собой. Они уже не двигаются хаотично, что позволяет образоваться кристаллической решетке как у твердых тел. Температура 0 °C, при которой это происходит, называется температурой замерзания воды. При заморозке вода расширяется. Многие могли познакомиться с таким физическим явлением на кухне, когда помещали пластиковую бутылку с напитком в морозилку для быстрого охлаждения и забывали об этом, а после бутылку распирало. При охлаждении до температуры 4 °C сначала наблюдается увеличение плотности воды, при которой достигается ее максимальная плотность и минимальный объем. Затем при температуре от 4 до 0 °C происходит перестройка связей в молекуле воды, и ее структура становится менее плотной. При температуре 0 °C жидкая фаза воды меняется на твердую. После полного замерзания воды и превращения в лед ее объем вырастает на 8,4%, что и приводит к распиранию пластиковой бутылки. Содержание жидкости во многих продуктах мало, поэтому они при заморозке не так заметно увеличиваются в объеме.

3. Абсорбция и адсорбция
Эти два почти неразделимых физических явления, которые получили свое название от латинского sorbeo (поглощать), на кухне наблюдаются, например, при нагревании воды в чайнике или кастрюле. Газ, не действующий химически на жидкость, может, тем не менее, поглощаться ею при соприкосновении с ней. Такое явление называется абсорбцией. При поглощении газов твердыми мелкозернистыми или пористыми телами большая их часть плотно скапливается и удерживается на поверхности пор или зерен и не распределяется по всему объему. В этом случае процесс называют адсорбцией. Эти явления можно наблюдать при кипячении воды — со стенок кастрюли или чайника при нагревании отделяются пузырьки. Воздух, выделяемый из воды, содержит 63% азота и 36% кислорода. А в целом атмосферный воздух содержит 78% азота и 21% кислорода.
Поваренная соль в незакрытой емкости может стать влажной из-за своих гигроскопических свойств — поглощения из воздуха водяного пара. А сода выступает в качестве адсорбента, когда ее ставят в холодильник для удаления запаха.

4. Проявление закона Архимеда
Приготовившись сварить курицу, мы наполняем кастрюлю водой примерно наполовину или на ¾ в зависимости от размера курицы. Погружая тушку в кастрюлю с водой, мы замечаем, что вес курицы в воде заметно уменьшается, а вода поднимается к краям кастрюли.
Это физическое явление объясняется выталкивающей силой или законом Архимеда. В этом случае на тело, погружённое в жидкость, действует выталкивающая сила, равная весу жидкости в объеме погруженной части тела. Эта сила называется силой Архимеда, как и сам физический закон, объясняющий это явление.

5. Поверхностное натяжение
Многие помнят опыты с пленками жидкостей, которые показывали на уроках физики в школе. Небольшую проволочную рамку с одной подвижной стороной опускали в мыльную воду, а затем вытаскивали. Силы поверхностного натяжения в образовавшейся по периметру пленке поднимали нижнюю подвижную часть рамки. Чтобы сохранить ее неподвижной, к ней подвешивали грузик при повторном проведении опыта. Это же физическое явление можно наблюдать и на вашей кухне в дуршлаге — после использования в дырочках дна этой кухонной посуды остается вода. Такое же явление можно наблюдать после мойки вилок — на внутренней поверхности между некоторыми зубьями также есть полоски воды.
Физика жидкостей объясняет это явление так: молекулы жидкости настолько близки друг к другу, что силы притяжения между ними создают поверхностное натяжение в плоскости свободной поверхности. Если сила притяжения молекул воды пленки жидкости слабее силы притяжения к поверхности дуршлага, то водная пленка разрывается. Также силы поверхностного натяжения заметны, когда мы будем сыпать в кастрюлю с водой крупу или горох, бобы, или добавлять круглые крупинки перца. Некоторые зерна останутся на поверхности воды, тогда как большинство под весом остальных опустятся на дно. Если кончиком пальца или ложкой слегка надавить на плавающие крупинки, то они преодолеют силу поверхностного натяжения воды и опустятся на дно.

6. Смачивание и растекание
Вот еще одно знакомое всем физическое явление, которое можно наблюдать на кухне: на плите с жировой пленкой пролитая жидкость может образовать маленькие пятна, а на столе — одну лужицу. Все дело в том, что молекулы жидкости в первом случае сильнее притягиваются друг к другу, чем к поверхности плиты, где есть несмачиваемая водой жировая пленка, а на чистом столе притяжение молекул воды к молекулам поверхности стола выше, чем притяжение молекул воды между собой. В результате лужица растекается.
Это явление также относится к физике жидкостей и связано с поверхностным натяжением. Как известно, мыльный пузырь или капли жидкости имеют шарообразную форму из-за сил поверхностного натяжения. В капле молекулы жидкости притягиваются друг к другу сильней, чем к молекулам газа, и стремятся внутрь капли жидкости, уменьшая площадь ее поверхности. Но, если есть твердая смачиваемая поверхность, то часть капли при соприкосновении растягивается по ней, потому что молекулы твердого тела притягивают молекулы жидкости, и эта сила превосходит силу притяжения между молекулами жидкости. Степень смачивания и растекание по твердой поверхности будет зависеть от того, какая сила больше — сила притяжения молекул жидкости и молекул твердого тела между собой или сила притяжения молекул внутри жидкости.
Это физическое явление с 1938 года широко стали использовать в промышленности, в производстве бытовых товаров, когда в лаборатории компании DuPont был синтезирован материал Teflon (политетрафлуороэтилен). Его свойства используются не только в изготовлении посуды с антипригарным покрытием, но и в производстве непромокаемых, водоотталкивающих тканей и покрытий для одежды и обуви. Teflon отмечен в «Книге рекордов Гинесса» как самая скользкая субстанция в мире. Он имеет очень низкие поверхностное натяжение и адгезию (прилипание), не смачивается ни водой, ни жирами, ни многими органическими растворителями.

7. Теплопроводность
Одно из самых частых физических явлений на кухне, которое мы можем наблюдать — это нагрев чайника или воды в кастрюле. Теплопроводность — это передача теплоты через движение частиц, когда есть разница (градиент) температуры. Среди видов теплопроводности есть и конвекция. В случае одинаковых веществ, у жидкостей теплопроводность меньше, чем у твердых тел, и больше по сравнению с газами. Теплопроводность газов и металлов возрастает с повышением температуры, а жидкостей — уменьшается. С конвекцией мы сталкиваемся постоянно, помешиваем ли мы ложкой суп или чай, или открываем окно, или включаем вентиляцию для проветривания кухни. Конвекция — от латинского convectiō (перенесение) — вид теплообмена, когда внутренняя энергия газа или жидкости передается струями и потоками. Различают естественную конвекцию и принудительную. В первом случае слои жидкости или воздуха сами перемешиваются при нагревании или остывании. А во втором случае — происходит механическое перемешивание жидкости или газа — ложкой, вентилятором или иным способом.

8. Электромагнитное излучение
У многих людей на кухне есть микроволновка. И она тоже работает на основе физических явлений. Микроволновку иногда называют сверхвысокочастотной печью, или СВЧ-печью. Основной элемент каждой микроволновки — магнетрон, который преобразует электрическую энергию в сверхвысокочастотное электромагнитное излучение частотой до 2,45 гигагерц (ГГц). Излучение разогревает еду, взаимодействуя с ее молекулами. В продуктах есть дипольные молекулы, содержащие на противоположных своих частях положительные электрические и отрицательные заряды. Это молекулы жиров, сахара, но больше всего дипольных молекул в воде, которая содержится почти в любом продукте. СВЧ-поле, постоянно меняя свое направление, заставляет с высокой частотой колебаться молекулы, которые выстраиваются вдоль силовых линий так, что все положительные заряженные части молекул «смотрят», то в одну, то в другую сторону. Возникает молекулярное трение, выделяется энергия, что и нагревает пищу.

9. Индукция
На кухне все чаще можно встретить индукционные плиты, в основе работы которых заложено это физическое явление. Английский физик Майкл Фарадей открыл электромагнитную индукцию в 1831 году и с тех пор без нее невозможно представить нашу жизнь. Фарадей обнаружил возникновение электрического тока в замкнутом контуре из-за изменения магнитного потока, проходящего через этот контур. Известен школьный опыт, когда плоский магнит перемещается внутри спиралеобразного контура из проволоки (соленоида), и в ней появляется электрический ток. Есть и обратный процесс — переменный электроток в соленоиде (катушке) создает переменное магнитное поле.
По такому же принципу работает и современная индукционная плита. Под стеклокерамической нагревательной панелью (нейтральна к электромагнитным колебаниям) такой плиты находится индукционная катушка, по которой течет электроток с частотой 20−60 кГц, создавая переменное магнитное поле, наводящее вихревые токи в тонком слое (скин-слое) дна металлической посуды. Из-за электрического сопротивления посуда нагревается. Эти токи не более опасны, чем раскаленная посуда на обычных плитах. Но чтобы это физическое явление запустилось, посуда должна быть стальной или чугунной, обладающей ферромагнитными свойствами (притягивать магнит).

10. Преломление света
Угол падения света равен углу отражения, а распространение естественного света или света от ламп объясняется двойственной, корпускулярно-волновой природой: с одной стороны — это электромагнитные волны, а с другой — частицы-фотоны, которые двигаются с максимально возможной во Вселенной скоростью. На кухне можно наблюдать такое оптическое явление, как преломление света. Например, когда на кухонном столе стоит прозрачная ваза с цветами, то стебли в воде как бы смещаются на границе поверхности воды относительно своего продолжения вне жидкости. Дело в том, что вода, как линза, преломляет лучи света, отраженные от стеблей в вазе.

Свежие комментарии